
https://ted.dev/about

Testable
Architecture
Designing for Testable Code

Ted M. Young
Java Trainer, Coach, & Live Coder

Me: https://ted.dev/about

BlueSky: @ted.dev

Twitch: https://JitterTed.Stream

YouTube: https://JitterTed.TV

Source Code? Slides? Go here:

https://ted.dev/talks

 https://ted.dev/about

I Can Help Your Team...

Write more Testable code
with more Effective tests

Be more productive in

Java & Spring

Effectively use

TDD

Refactor
Messy
Code

Ted M. Young
ted@tedmyoung.com

 https://ted.dev/about

Faster Test Feedback
Majority Fast, Some Slow, A Few Slowest

 https://ted.dev/about

What is Architecture?

 https://ted.dev/about

Architecture is…
Organization of Code Deployment/Operational

layers tiers

 https://ted.dev/about

Writing tests is hard because…

Classes are poorly
organized

Too much state

Too many
responsibilities

Classes mix logic
and I/O access

Infrastructure

Hardware

Framework

 https://ted.dev/about

I/O is…
Anything outside of the current process

 https://ted.dev/about

I/O includes…

• Hardware
• System clock, Random number generator, Local files

• Remote Services
• via HTTP, Queues, RPC

• Databases
• Including "in-memory" databases (H2, SQLite, Redis)

• Other Processes

• Frameworks (Spring, Quarkus, etc.)

 https://ted.dev/about

SCION-T

Separating
Concerns of
I/O and
Non-I/O for
Testability

Testable
Architecture

 https://ted.dev/about

SCION-T (Testable) Architectures

Boundary Controller Entity

Functional
Core

Imperative

Functional
Core

Shell

 https://ted.dev/about

Inside the Code
A Simple Example

 https://ted.dev/about

Mixed
Concerns

 https://ted.dev/about

Testing
Mixed

Concerns

 https://ted.dev/about

Refactor Out Calculations
aka Domain Logic

 https://ted.dev/about

Separated Concerns

 https://ted.dev/about

Testing Separated Concerns

 https://ted.dev/about

Using Separated Concerns

 https://ted.dev/about

Hexagonal + DDD
Architecture

Hexagonal Architecture is
not a Specification…

Disclaimer…

…it's a Pattern

also known as PORTS & ADAPTERS

“Allow an application to equally be driven
by users, programs, [and] automated
tests... and to be developed and tested in
isolation from its eventual run-time
devices and databases.”

Ports & Adapters Pattern
Alistair Cockburn

“Allow an application to equally be driven
by users, programs, [and] automated
tests... and to be developed and tested in
isolation from its eventual run-time
devices and databases.”

Ports & Adapters Pattern
Alistair Cockburn

“Allow an application to equally be driven
by users, programs, [and] automated
tests... and to be developed and tested in
isolation from its eventual run-time
devices and databases.”

Ports & Adapters Pattern
Alistair Cockburn

INSIDE

OUTSIDE

OUTSIDE

OUTSIDE

OUTSIDE

OUTSIDE

OUTSIDE

OUTSIDE

OUTSIDE

APPLICATION
&

DOMAIN
CODE

OF

WORLD

REST

THE

APPLICATION
&

DOMAIN
CODE

INPUTS

REQUESTS

OUTPUTS

EVENTS

USER DATA

APPLICATION
&

DOMAIN
CODE

INPUTS

REQUESTS

OUTPUTS

EVENTS

APPLICATION
&

DOMAIN
CODE

DRIVING DRIVENINBOUND OUTBOUND

User
Interface

APPLICATION
(use case)

BOUNDARY

NO CONCRETE

I/O ONLY

ABSTRACTION

S

p
er

si
st

en
ce

Persistencep
o

rt

DOMAIN

NO

DOMAIN OBJECTS

OUTSIDE THIS

BOUNDARY

SYSTEM

BOUNDARY

NO

AWARENESS

OF I/O

Unit
Tests

Inbound Adapter Application Applicati

on

Core Domain

Dependencies
Point Inwards

Dependency Rule

Dependencies Point Inward

ENSEMBLER
managing ensemble events

Source Code: https://github.com/jitterted/ensembler

Web
User

Interface
Persistence

CONCRETE

OUTBOUND

ADAPTERS

INBOUND

ADAPTER

p
o

rt

DOMAIN

Ensembles
Members

Types of Tests
Hexagonal+Domain-Driven Design (HexADDD)

I/O-Free
Tests

DOMAIN

drives

domain logic

directly

 https://ted.dev/about

Testing
Domain

Directly

SIMULATES

OUTBOUND

ADAPTERS

V
id

eo
 C

o
n

f
Sc

h
ed

u
le

rEnsemble
Member

Conference-
Details

Mock
Conf

Scheduler

I/O-Free
Tests

SIMULATES

INBOUND

ADAPTER

drives scenarios

through the

application layer

drives scenarios

through the

application layer

 https://ted.dev/about

Testing

App
Layer:

Conferenc

e

Scheduler

SIMULATES

OUTBOUND

ADAPTERS

Ensemble
Member

Conference-
Details

I/O-Free
Tests

SIMULATES

INBOUND

ADAPTER

"SPY On" Notifiers

drives scenarios

through the

application layer

drives scenarios

through the

application layer

 https://ted.dev/about

Testing

App
Layer:

Notifier

 https://ted.dev/about

It's All Trade-offs
Increase Testability → Lose Simplicity

 https://ted.dev/about

Use a Testable Architecture…

Boundary Controller Entity

Functional
Core

Imperative

Functional
Core

Shell

 https://ted.dev/about

Keep 'em [I/O] Separated

Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com
About me: https://ted.dev/about

Want Your Code
to be Easier to Test?

 https://ted.dev/about

Thank You…
Source Code? Slides? https://ted.dev/talks/

Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com

Twitter: @JitterTed

Twitch: https://JitterTed.Stream

YouTube: https://JitterTed.TV

About me: https://ted.dev/about

	Slide 1: Testable Architecture
	Slide 2: Ted M. Young ted@tedmyoung.com
	Slide 3: Faster Test Feedback
	Slide 4: What is Architecture?
	Slide 5: Architecture is…
	Slide 6: Writing tests is hard because…
	Slide 7: I/O is…
	Slide 8: I/O includes…
	Slide 9: SCION-T 🤔
	Slide 10: SCION-T (Testable) Architectures
	Slide 11: Inside the Code
	Slide 12: Mixed Concerns
	Slide 13: Testing Mixed Concerns
	Slide 14: Refactor Out Calculations
	Slide 15: Separated Concerns
	Slide 16: Testing Separated Concerns
	Slide 17: Using Separated Concerns
	Slide 18
	Slide 19: Hexagonal Architecture is not a Specification…
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Dependencies Point Inwards
	Slide 31
	Slide 32: ENSEMBLER managing ensemble events
	Slide 33
	Slide 34: Types of Tests
	Slide 35
	Slide 36: Testing Domain Directly
	Slide 37
	Slide 38: Testing App Layer: Conference Scheduler
	Slide 39
	Slide 40
	Slide 41: It's All Trade-offs
	Slide 42: Use a Testable Architecture…
	Slide 43: Keep 'em [I/O] Separated
	Slide 44: Thank You…

