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I Can Help Your Team...

Write more Testable code
with more Effective tests

Be more productive in

Java & Spring

Effectively use

TDD

Refactor 
Messy
Code

Ted M. Young
ted@tedmyoung.com
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Faster Test Feedback
Majority Fast, Some Slow, A Few Slowest
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What is Architecture?
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Architecture is…
Organization of Code Deployment/Operational

layers tiers
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Writing tests is hard because…

Classes are poorly 
organized

Too much state

Too many 
responsibilities

Classes mix logic 
and I/O access

Infrastructure

Hardware

Framework
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I/O is…
Anything outside of the current process
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I/O includes…

• Hardware
• System clock, Random number generator, Local files

• Remote Services
• via HTTP, Queues, RPC

• Databases
• Including "in-memory" databases (H2, SQLite, Redis)

• Other Processes

• Frameworks (Spring, Quarkus, etc.)
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SCION-T  

Separating
Concerns of 
I/O and 
Non-I/O for 
Testability

Testable
Architecture
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SCION-T (Testable) Architectures

     

                             

             

             

Boundary Controller Entity

Functional 
Core

Imperative

Functional 
Core

Shell
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Inside the Code
A Simple Example
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Mixed 
Concerns
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Testing
Mixed 

Concerns



 https://ted.dev/about

Refactor Out Calculations
aka Domain Logic
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Separated Concerns
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Testing Separated Concerns
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Using Separated Concerns
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Hexagonal + DDD
Architecture



Hexagonal Architecture is 
not a Specification…

Disclaimer…

…it's a Pattern

also known as PORTS & ADAPTERS



“Allow an application to equally be driven 
by users, programs, [and] automated 
tests... and to be developed and tested in 
isolation from its eventual run-time 
devices and databases.”

Ports & Adapters Pattern
Alistair Cockburn
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Dependencies
Point Inwards

Dependency Rule



Dependencies Point Inward



ENSEMBLER
managing ensemble events

Source Code: https://github.com/jitterted/ensembler
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Types of Tests
Hexagonal+Domain-Driven Design (HexADDD)



I/O-Free
Tests

DOMAIN

drives

domain logic 

directly
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Testing 
Domain 

Directly



SIMULATES

OUTBOUND
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drives scenarios 

through the 
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Testing 

App
Layer:

Conferenc

e 

Scheduler



SIMULATES

OUTBOUND

ADAPTERS

Ensemble
Member

Conference-
Details

I/O-Free 
Tests

SIMULATES

INBOUND

ADAPTER

"SPY On" Notifiers

drives scenarios 

through the 

application layer

drives scenarios 

through the 

application layer
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Testing 

App
Layer:

Notifier
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It's All Trade-offs
Increase Testability → Lose Simplicity
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Use a Testable Architecture…
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Keep 'em [I/O] Separated

Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com
About me: https://ted.dev/about

Want Your Code
to be Easier to Test?
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Thank You…
Source Code? Slides? https://ted.dev/talks/

Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com

Twitter: @JitterTed

Twitch: https://JitterTed.Stream

YouTube: https://JitterTed.TV

About me: https://ted.dev/about
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