
REFACTORING
TESTS

TED M. YOUNG
technical coach
live coder
board game designer

https://TED.DEV/about

Ask Questions As You Need

I may defer the
answer if I'm going to
cover it later!

WARNING: Java Ahead

Hi, I'm Ted and
I'm a Java Developer

JUnit

AssertJ

Ladder of Refactoring Tests

Structuring Tests

Better Assertions

Simple Abstractions

Test Builders

Custom
Assertions

Good Test
Suite?

What makes a…

Good Test Suites…

Safety Net for System Behavior

Flexible to support refactoring

Living Documentation (good naming with ubiquitous

language)

Comprehensive (not just code coverage!)

Helps with discipline (guardrails to good developer

behavior)

Test
Principles

FIRST Principles (of Tests)

F - fast

I - isolated (independent)

R - repeatable

S - self-validating

T - timely

Brett Schuchert, Tim
Ottinger

https://agileinaflash.blogspot.com/2009/02/first.html

Test Desiderata Kent Beck

✓ Isolated

✓ Composable

✓ Deterministic

✓ Fast

✓ Writable

✓ Readable

✓ Behavioral

✓ Structure-insensitive

✓ Automated

✓ Specific

✓ Predictive

✓ Inspiring

Test Structures
• Arrange, Act, Assert¹ (3A or AAA)

• Given, When, Then (BDD-terminology)²

• Assemble, Activate, Assert³

• Setup, Execute, Verify[, Teardown]4

¹ Bill Wake, 2001 (https://xp123.com/3a-arrange-act-assert/)
2 Daniel Terhorst-North, 2006 (https://dannorth.net/blog/introducing-bdd/)
3 C2 Wiki (https://wiki.c2.com/?AssembleActivateAssert)
4 Gerard Meszaros, xUnit Test Patterns (book)

The SEA Test Structure

Setup - prepare object(s) for execution

Execute - invoke a Command (trigger action)

 (sometimes: Create an Object]

Assert - what do we Expect to be Observed?

Basic SEA Test

Another Basic SEA Test

SEA Tests With No "Setup"

SEA Test With Embedded Execute

Test Smells
Like Code Smells, but for Test Code

smell: Hidden Setup

fix: Inline Setup

smell: Unclear/Undefined Setup Details

fix: Add Useful Details

smell: Unclear Assertion Message

fix: Clarify Assertion Message

smell: Very Similar Tests

fix: Parameterize Differences

smell: Split Attention

fix: Add Description!

I'm lazy: I often skip this step, but then regret it.

Claude also seems lazy, because it fails to do this as well!

smell: Verbose Example

fix: Eliminate Unnecessary Stuff

Refactoring Setup

 HandValueAceBeforeTest

Evident Data

Evident Data seems to be an exception to

the rule that you don’t want magic numbers

in your code.

Kent Beck

TDD By Example (Ch. 25)

Blackjack Hand Value Calculation

"Gang of Four" Builder Pattern

(Joshua) Bloch Builder Pattern

Essentially the fluent

(or chained) API

(Joshua) Bloch Builder Pattern

Exception
Asserts

Blackjack: Face Up/Down Cards

Blackjack Game Standard Assert
@Test void playerStandsDealerCardsFaceUp() {

 Deck deck = StubDeckBuilder.playerCountOf(1)

 .addPlayerWithRanks(Rank.TEN, Rank.JACK)

 .buildWithDealerDoesNotDrawCards();

 Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

 game.playerStands();

 assertThat(game.dealerHand().cards())

 .allMatch(card -> !card.isFaceDown());

}

With Predicate
@Test void playerStandsDealerCardsFaceUp() {

 Deck deck = StubDeckBuilder.playerCountOf(1)

 .addPlayerWithRanks(Rank.TEN, Rank.JACK)

 .buildWithDealerDoesNotDrawCards();

 Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

 game.playerStands();

 Predicate<Card> faceUpCardPredicate = card -> !card.isFaceDown();

 assertThat(game.dealerHand().cards())

 .allMatch(faceUpCardPredicate);

}

Encapsulate Assertion
@Test void playerStandsDealerAllCardsFaceUp_predicate() {

 Deck deck = StubDeckBuilder.playerCountOf(1)

 .addPlayerWithRanks(Rank.TEN, Rank.JACK)

 .buildWithDealerDoesNotDrawCards();

 Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

 game.playerStands();

 assertAllDealerCardsFaceUp(game);

}
static void assertAllDealerCardsFaceUp(Game game) {
 assertThat(game.dealerHand().cards())
 .allMatch(card -> !card.isFaceDown());
}

Blackjack Game Custom Asserts

@Test void playerStandsDealerCardsFaceUp() {

 Deck deck = StubDeckBuilder.playerCountOf(1)

 .addPlayerWithRanks(Rank.TEN, Rank.JACK)

 .buildWithDealerDoesNotDrawCards();

 Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

 game.playerStands();

 assertThat(game)

 .dealerHand()

 .allCardsFaceUp();

}

Naming Tests: Goals

Fail? Useful information in output

Change behavior? Tests exercise that behavior

Organizing Tests

Nested classes

Refactoring to Fixture Record

Need multiple return values from factory method

Tests are Specific, Code is General

Duplication, literals (evident data)

 Tests

 Code

Abstractions

 Tests

 Code

What Questions Do You Have??

Tests are code, too, and
need the same amount of
attention for refactoring

THANK YOU
You've Been a Great Audience

	Default Section
	Slide 1: REFACTORING TESTS
	Slide 2: Ask Questions As You Need
	Slide 3: WARNING: Java Ahead
	Slide 4: Ladder of Refactoring Tests

	Principles
	Slide 6: Good Test Suite?
	Slide 7: Good Test Suites…
	Slide 8: Test Principles
	Slide 9: FIRST Principles (of Tests)
	Slide 10: Test Desiderata

	Test Structure
	Slide 11: Test Structures
	Slide 12: The SEA Test Structure
	Slide 13: Basic SEA Test
	Slide 14: Another Basic SEA Test
	Slide 15: SEA Tests With No "Setup"
	Slide 16: SEA Test With Embedded Execute

	Test Smells
	Slide 17: Test Smells
	Slide 18: smell: Hidden Setup
	Slide 19: fix: Inline Setup
	Slide 20: smell: Unclear/Undefined Setup Details
	Slide 21: fix: Add Useful Details
	Slide 22: smell: Unclear Assertion Message
	Slide 23: fix: Clarify Assertion Message
	Slide 24: smell: Very Similar Tests
	Slide 25: fix: Parameterize Differences
	Slide 26: smell: Split Attention
	Slide 27: fix: Add Description!
	Slide 29: smell: Verbose Example
	Slide 30: fix: Eliminate Unnecessary Stuff

	Simple Abstractions
	Slide 31: Refactoring Setup

	Better Assertions
	Slide 32: Evident Data
	Slide 33: Blackjack Hand Value Calculation

	Test Builders
	Slide 34: "Gang of Four" Builder Pattern
	Slide 35: (Joshua) Bloch Builder Pattern
	Slide 36: (Joshua) Bloch Builder Pattern

	Better with AssertJ
	Slide 37: Exception Asserts

	Using Custom Assertions
	Slide 38: Blackjack: Face Up/Down Cards
	Slide 39: Blackjack Game Standard Assert
	Slide 40: With Predicate
	Slide 41: Encapsulate Assertion
	Slide 42: Blackjack Game Custom Asserts

	Extra Stuff
	Slide 43: Naming Tests: Goals
	Slide 44: Organizing Tests
	Slide 45: Refactoring to Fixture Record

	The End
	Slide 53: Tests are Specific, Code is General
	Slide 54: What Questions Do You Have??
	Slide 55: THANK YOU

