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Ask Questions As You Need

I may defer the 
answer if I'm going to 
cover it later!



WARNING: Java Ahead

Hi, I'm Ted and
I'm a Java Developer

JUnit

AssertJ



Ladder of Refactoring Tests

Structuring Tests

Better Assertions

Simple Abstractions

Test Builders

Custom
Assertions



Good Test 
Suite?

What makes a…



Good Test Suites…

Safety Net for System Behavior

Flexible to support refactoring

Living Documentation (good naming with ubiquitous 

language)

Comprehensive (not just code coverage!)

Helps with discipline (guardrails to good developer 

behavior)



Test 
Principles



FIRST Principles (of Tests)

F - fast

I - isolated (independent)

R - repeatable

S - self-validating

T - timely

Brett Schuchert, Tim 
Ottinger

https://agileinaflash.blogspot.com/2009/02/first.html



Test Desiderata Kent Beck

✓ Isolated

✓ Composable

✓ Deterministic

✓ Fast

✓ Writable

✓ Readable

✓ Behavioral

✓ Structure-insensitive

✓ Automated

✓ Specific

✓ Predictive

✓ Inspiring



Test Structures
• Arrange, Act, Assert¹ (3A or AAA)

• Given, When, Then (BDD-terminology)²

• Assemble, Activate, Assert³

• Setup, Execute, Verify[, Teardown]4

¹ Bill Wake, 2001 (https://xp123.com/3a-arrange-act-assert/)
2 Daniel Terhorst-North, 2006 (https://dannorth.net/blog/introducing-bdd/)
3 C2 Wiki (https://wiki.c2.com/?AssembleActivateAssert)
4 Gerard Meszaros, xUnit Test Patterns (book)



The SEA Test Structure

Setup - prepare object(s) for execution

Execute - invoke a Command (trigger action)

 (sometimes: Create an Object]

Assert - what do we Expect to be Observed?



Basic SEA Test



Another Basic SEA Test



SEA Tests With No "Setup"



SEA Test With Embedded Execute



Test Smells
Like Code Smells, but for Test Code



smell: Hidden Setup



fix: Inline Setup



smell: Unclear/Undefined Setup Details



fix: Add Useful Details



smell: Unclear Assertion Message



fix: Clarify Assertion Message



smell: Very Similar Tests



fix: Parameterize Differences



smell: Split Attention



fix: Add Description!

I'm lazy: I often skip this step, but then regret it.

Claude also seems lazy, because it fails to do this as well!



smell: Verbose Example



fix: Eliminate Unnecessary Stuff



Refactoring Setup

 HandValueAceBeforeTest



Evident Data

Evident Data seems to be an exception to 

the rule that you don’t want magic numbers 

in your code.

Kent Beck

TDD By Example (Ch. 25)



Blackjack Hand Value Calculation



"Gang of Four" Builder Pattern



(Joshua) Bloch Builder Pattern

Essentially the fluent

(or chained) API



(Joshua) Bloch Builder Pattern



Exception
Asserts



Blackjack: Face Up/Down Cards



Blackjack Game Standard Assert
@Test void playerStandsDealerCardsFaceUp() {

    Deck deck = StubDeckBuilder.playerCountOf(1)

                               .addPlayerWithRanks(Rank.TEN, Rank.JACK)

                               .buildWithDealerDoesNotDrawCards();

    Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

    game.playerStands();

    assertThat(game.dealerHand().cards())

        .allMatch(card -> !card.isFaceDown());

}



With Predicate
@Test void playerStandsDealerCardsFaceUp() {

    Deck deck = StubDeckBuilder.playerCountOf(1)

                               .addPlayerWithRanks(Rank.TEN, Rank.JACK)

                               .buildWithDealerDoesNotDrawCards();

    Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

    game.playerStands();

    Predicate<Card> faceUpCardPredicate = card -> !card.isFaceDown();

    assertThat(game.dealerHand().cards())

          .allMatch(faceUpCardPredicate);

}



Encapsulate Assertion
@Test void playerStandsDealerAllCardsFaceUp_predicate() {

    Deck deck = StubDeckBuilder.playerCountOf(1)

                               .addPlayerWithRanks(Rank.TEN, Rank.JACK)

                               .buildWithDealerDoesNotDrawCards();

    Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

    game.playerStands();

    assertAllDealerCardsFaceUp(game);

}
static void assertAllDealerCardsFaceUp(Game game) {
    assertThat(game.dealerHand().cards())
              .allMatch(card -> !card.isFaceDown());
}



Blackjack Game Custom Asserts

@Test void playerStandsDealerCardsFaceUp() {

    Deck deck = StubDeckBuilder.playerCountOf(1)

                               .addPlayerWithRanks(Rank.TEN, Rank.JACK)

                               .buildWithDealerDoesNotDrawCards();

    Game game = GameFactory.createOnePlayerGamePlaceBetsInitialDeal(deck);

    game.playerStands();

    assertThat(game)

            .dealerHand()

            .allCardsFaceUp();

}



Naming Tests: Goals

Fail? Useful information in output

Change behavior? Tests exercise that behavior



Organizing Tests

Nested classes



Refactoring to Fixture Record

Need multiple return values from factory method



Tests are Specific, Code is General

Duplication, literals (evident data)

 Tests 

 Code 

Abstractions

 Tests 

 Code 



What Questions Do You Have??

Tests are code, too, and 
need the same amount of 
attention for refactoring



THANK YOU
You've Been a Great Audience
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