
https://ted.dev/about

Event-Sourcing
from Scratch
How Should We Persist Data?

Ted M. Young
Java Trainer, Coach, & Live Coder

Me: https://ted.dev/about

BlueSky: @ted.dev

Twitch: https://JitterTed.Stream

YouTube: https://JitterTed.TV

Source Code? Slides? Go here:

https://ted.dev/talks

 https://ted.dev/about

I Can Help Your Team...

Write more Testable code
with more Effective tests

Be more productive in

Java & Spring

Effectively use

TDD

Refactor
Messy
Code

Ted M. Young
ted@tedmyoung.com

 https://ted.dev/about

Ask Questions As You Need

I may defer the
answer if I'm going
to cover it later!

 https://ted.dev/about

Event Sourcing Frameworks/Libraries

Java:
AxonIQ

.NET:
Marten

PHP:
EventSauce

 https://ted.dev/about

 https://ted.dev/about

What's in this TED Talk…
1. How do we persist data?

2. Define terms, clear up misconceptions

3. JitterTix: Concert Event Ticketing domain

4. Dig into code (warning: generics!) & tests

5. Related topics to explore on your own:
• CQRS, Event Modeling, Event Storming

• Versioning & Schema Migration

• Performance & Snapshotting

• Dynamic Consistency Boundary & Decider & GDPR

 https://ted.dev/about

How do we Persist Data?
Often: Map Objects to Database Tables (ORM)

 https://ted.dev/about

Mapping
Objects
from/to
Database

 https://ted.dev/about

Adapter-Driven Persistence

 https://ted.dev/about

Storing Data as "CRUD" or "State"

• "State-Sourced" / "CRUD-Sourced"

•No history, throws away old information

•No knowledge of how/why state changed

Concert

id = ab-12-cd
version = 1

artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100
ticketPrice = $135.00

Concert

id = ab-12-cd
version = 2

artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100
ticketPrice = $35.00

Concert

id = ab-12-cd
version = 3

artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 120
ticketPrice = $35.00

 https://ted.dev/about

Fundamentals

 https://ted.dev/about

Definitions: EVENT (the past)

a fact, something that happened

CustomerRegistered

ConcertScheduled

TicketPurchased

TicketTransferred

 https://ted.dev/about

Definition: STATE (now)

Data model needed by the application.

Concert

id = ab-12-cd
version = 1

artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100
ticketPrice = $135.00

 https://ted.dev/about

Definition: COMMAND (future)

Request to change state

schedule

reschedule

purchaseTickets

 https://ted.dev/about

Commands Generate Events

 https://ted.dev/about

Commands Generate Events

 https://ted.dev/about

…unless It's Not Allowed

 https://ted.dev/about

Events Update State

 https://ted.dev/about

Events Update State (always!)

 https://ted.dev/about

Events Project to State

 https://ted.dev/about

Event-Sourcing PROJECTION

A function that constructs a data model by
sequentially replaying events from the
event store.

 https://ted.dev/about

Event Store

An append-only "database" that records all
events generated by the application.

🪵

 https://ted.dev/about

Benefits of Event-Sourcing

 https://ted.dev/about

Ask Questions You Didn't
Know You Had
How many customers transfer tickets?

 https://ted.dev/about

Immutable Events
Never lose information: there is no DELETE

 https://ted.dev/about

Replayability
Time Travel: see state of system in the past

 https://ted.dev/about

Doman-Driven Design
Tactical Patterns

 https://ted.dev/about

 https://ted.dev/about

Entity
Unique (Has Identity), History, and Attributes

 https://ted.dev/about

Value Object
Identified Only by its Attributes (immutable)

Quantify, describe, and measure

 https://ted.dev/about

Aggregate

Consistency [transactional] Boundary

(Enforced by "Aggregate Root" Entity)

 https://ted.dev/about

Aggregate Pattern

 https://ted.dev/about

Repository
Used for Storing and Retrieving Aggregates

 https://ted.dev/about

Aggregate & Projections
Aggregates in Event-Sourcing is a Projection

and the Decider

 https://ted.dev/about

Misconceptions

 https://ted.dev/about

Event-Driven Architecture
Different Kinds of Events

 https://ted.dev/about

CQRS
Command-Query Responsibility Segregation

Does Not Require Event-Sourcing!

 https://ted.dev/about

 https://ted.dev/about

JitterTicket Design
tldraw

 https://ted.dev/about

Diving Into the Code
JitterTix: Concert Ticketing System

 https://ted.dev/about

Events as Java Records

 https://ted.dev/about

Events as Java Classes

Software design is
all about tradeoffs.

 https://ted.dev/about

Code Walkthrough

 https://ted.dev/about

Versioning Event Logs (Streams)

(see Greg Young's Versioning in an Event-Sourced System)

•Copy-Replace

• Split-Stream

• Join-Stream

•Copy-Transform

 https://ted.dev/about

CQRS – Separated Data Models

 https://ted.dev/about

Event
Modeling

 https://ted.dev/about

 https://ted.dev/about

Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com
About me: https://ted.dev/about

What other questions

do you have?

 https://ted.dev/about

Thank You…
Source Code? Slides?
https://ted.dev/talks/

Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com

About me: https://ted.dev/about

Don't forget
to rate this
session!

	Default Section
	Slide 1: Event-Sourcing from Scratch
	Slide 2: Ted M. Young ted@tedmyoung.com
	Slide 3: Ask Questions As You Need
	Slide 4: Event Sourcing Frameworks/Libraries
	Slide 5
	Slide 6: What's in this TED Talk…

	Persisting Data
	Slide 7: How do we Persist Data?
	Slide 8: Mapping Objects from/to Database
	Slide 9: Adapter-Driven Persistence
	Slide 10: Storing Data as "CRUD" or "State"

	Events
	Slide 12: Fundamentals
	Slide 13: Definitions: EVENT (the past)
	Slide 14: Definition: STATE (now)
	Slide 15: Definition: COMMAND (future)
	Slide 16: Commands Generate Events
	Slide 17: Commands Generate Events
	Slide 18: …unless It's Not Allowed
	Slide 19: Events Update State
	Slide 20: Events Update State (always!)
	Slide 21: Events Project to State
	Slide 22: Event-Sourcing PROJECTION
	Slide 23: Event Store
	Slide 24: Benefits of Event-Sourcing
	Slide 25: Ask Questions You Didn't Know You Had
	Slide 26: Immutable Events
	Slide 27: Replayability
	Slide 28: Doman-Driven Design
	Slide 29
	Slide 30: Entity
	Slide 31: Value Object
	Slide 32: Aggregate
	Slide 33: Aggregate Pattern
	Slide 34: Repository
	Slide 35: Aggregate & Projections

	Misconceptions
	Slide 36: Misconceptions
	Slide 37: Event-Driven Architecture
	Slide 38: CQRS

	JitterTicket Codebase
	Slide 39
	Slide 40: JitterTicket Design
	Slide 41: Diving Into the Code
	Slide 42: Events as Java Records
	Slide 43: Events as Java Classes
	Slide 44: Code Walkthrough

	Versioning Schema
	Slide 45: Versioning Event Logs (Streams)

	Other Topics
	Slide 46: CQRS – Separated Data Models
	Slide 47: Event Modeling

	Closing
	Slide 48
	Slide 49: What other questions do you have?
	Slide 50: Thank You…

