Ted M. Young

Java Trainer, Coach, & Live Coder

Event-Sourcing
from Scratch

How Should We Persist Data ?

Me: https://ted.dev/about
BlueSky: @ted.dev Source Code? Slides? Go here:
YouTube: https://litterTed. TV

Ted M. Young

ted@tedmyoung.com
| Can Help Your Team...
. \ A
Write more Testable code
with more Effective tests Refactor
: v | Messy
Be more productive in Effectively use Code
Java & Spring TDD C ,

https://ted.dev/a bout%

Ask Questions As You Need

| may defer the
answer if I'm going
to cover it later!

https://ted.dev/a bout%

Event Sourcing Frameworks/Libraries

PHP:

EventSauce

https://ted.dev/about

What's in this TED Talk...

How do we persist data?
Define terms, clear up misconceptions
JitterTix: Concert Event Ticketing domain

Dig into code (warning: generics!) & tests

A S A

Related topics to explore on your own:
* CQRS, Event Modeling, Event Storming
* Versioning & Schema Migration
* Performance & Snapshotting
* Dynamic Consistency Boundary & Decider & GDPR

https://ted.dev/about

How do we Persist Data?

Often: Map Objects to Database Tables (ORM)

[] r/lExperiencedDevs
q p pl n g u/Fuzzy_World427 - 10h

DDD: How do you map DTOs when entities

o have private setters?
Objects

I'm running into trouble mapping DTOs into
fro m fo aggregates. My entities all have private setters
(to protect invariants), but this makes mapping

tricky.

D q fq b q s e I've seen different approaches:

- Passing the whole DTO into the aggregate root
constructor (but then the domain knows about
DTOs).

- Using mapper/extension classes (cleaner, but
can't touch private setters).

- Factory methods (same issue).
- Even AutoMapper struggles with private setters
without ugly hacks.

So how do you usually handle mapping DTOs to
aggregates when private setters are involved?

S22 & O s K)o

https://ted.dev/about

Adapter-Driven Persistence

Concert

ConcertService Repository Concert

Database

Adapter Repository

findConcertById("ab-12-cd")

>
findById("ab-12-cd")

P>
(ORM does SELECT)

(result set)

convert result s

ConcertDto

convert CpncertDto
to Concert dpmain object

-
'

Concert

Concert

ConcertService Repository Concert

. Database
Adapter Repository

https://ted.dev/about

Storing Data as "CRUD" or "State”

o "State-Sourced" / "CRUD-Sourced"
* No history, throws away old information

* No knowledge of how/why state changed

Concert

id = ab-12-cd

version =1

artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100

ticketPrice = $135.00

Concert

id=ab-12-cd

version = 2

artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100

ticketPrice = $35.00Q

id =ab-12-cd

version = 3

artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm

ticketPrice = $35.00

ticketsAvailable = 120

https://ted.dev/about

Fundamentals

Present

Command

https://ted.dev/about

Definitions: EVENT (the past)

a fact, something that happened

CustomerRegistered
ConcertScheduled
TicketPurchased
TicketTransferred

https://ted.dev/about

Definition: STATE (now)

Data model needed by the application.

Concert

id = ab-12-cd

version =1

artist ="Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100

ticketPrice = $135.00

https://ted.dev/about

Definition: COMMAND (future)

Request to change state

schedule
reschedule
purchaseTickets

https://ted.dev/about

Commands Generate Events

Command Event

— generate —

https://ted.dev/a bout%

Commands Generate Events

Reschedule Concert

Concert — generate —> Rescheduled

https://ted.dev/a bout%

...unless It's Not Allowed

Reschedule Concert

Concert — generat Rescheduled

https://ted.dev/a bout%

Events Update State

https://ted.dev/a bout%

Events Update State (always!)

Concert Concert

Rescheduled update : Nov 2,

Nov 2, 2025 2025

https://ted.dev/a bout%

Events Project to State

Concert Concert
Scheduled Ticket Price Concert

Sonic Waves + Changed + Rescheduled

Sonic Waves

Oct 30, 2025 $35 Nov2,2025 Projected = Nov2, 2025
$135, 100 tix $35, 100 tix

https://ted.dev/about

Event-Sourcing PROJECTION

A function that constructs a data model by
sequentially replaying events from the
event store.

https://ted.dev/about

Event Store

An append-only "database" that records all
events generated by the application.

https://ted.dev/about .

Benefits of Event-Sourcing

Ask Questions You Didn't
Know You Had

How many customers transfer tickets?

Immutable Events

Never lose information: there is no DELETE

Replayability

Time Travel: see state of system in the past

Doman-Driven Design

Tactical Patterns

access with REPOSITORIES

SERVICES .
access with
maintain integrity with
ENTITIES

nodel with
act as root of

pxpress model with
AGGREGATES

express model with
~ VALUE OBJECTS

encapsulate with

encapsulate with epcapsulate with

blate domain with

LAYERED encapsulate with
ARCHITECTURE FACTORIES

https://ted.dev/about

Entity

Unique (Has Identity), History, and Attributes

Value Object

ldentified Only by its Attributes (immutable)

Quantify, describe, and measure

Aggregate

Consistency [transactional] Boundary

(Enforced by "Aggregate Root" Entity)

Aggregate Pattern

Buyer Aggregate (One entity) Order Aggregate (Multiple entities and Value-Object)

Attributes Attributes

Buyer (Aggregate Root) ID Street
OrderData City

Attributes [BuyerlD]
ID [Address]

FullName [Orderltems]
[PaymentMethods] Orderltem (child Entity)

Attributes
D
ProductiD
Price

Methods
Methods Order(params) constructor
Buyer(params) constructor AddOrderltem(item)
SetAddress(address)
CalculateTotal()

https://ted.dev/about

Repository

Used for Storing and Retrieving Aggregates

Reschedule C
t — generat Rescheduled

Aggregate & Projections

Aggregates in Event-Sourcing is a Projection
and the Decider

Misconceptions

Event-Driven Architecture

Different Kinds of Events

CQRS

Command-Query Responsibility Segregation

Does Not Require Event-Sourcing!

JitterTix

Concert Ticketing

The Event-Sourced Ticketing System

Explore Concert Tickets Event Viewer

https://ted.dev/a bout%

JitterTicket Design

tldraw

JitterTix: Concert Ticketing System

Diving Into the Code

Events as Java

@ Event

o Integer eventSequence()

A

@ CustomerEvent @ ConcertEvent
o Customerld customerld() e Concertld concertld() <7 _
- - A p \ = -
- y \ S .
e | / \ >
s I \ -
e «record» \ N
«record» ConcertScheduled N h
© «record» TicketsPurchased 5 Concertld concertld «recordy» «record»
CustomerRegistered ConcertRescheduled TicketsSold
o Customerld customerld o Integer eventSequence
o Customerld customerld o Integer eventSequence o String artist o Concertld concertld o Concertld concertld
O Integer eventSequence o TicketOrderld ticketOrderld o int ticketPrice O Integer eventSequence o Integer eventSequence
o String customerName o Concertld concertld 0 LocalDateTime showDateTime o LocalDateTime newShowDateTime O int quantity
o String email O int quantity o LocalTime doorsTime o LocalTime newDoorsTime o int paidAmount
o int paidAmount O int capacity
o int maxTicketsPerPurchase

https://ted.dev/about

Events as Java Classes

® Event

e Integer eventSequence()

A

® CustomerEvent

e Customerld customerld()

Software design is
all about tradeoffs.

@ ConcertEvent

e Concertld concertld()

©CustomerRegistered

© TicketsPurchased

© ConcertScheduled

o String customerName
o String email

o TicketOrderld ticketOrderld

o Concertld concertld
O int quantity
o int paidAmount

o String artist
o int ticketPrice
0 LocalDateTime showDateTime o LocalDateTime newShowDateTime
0 LocalTime doorsTime
0O int capacity

o int maxTicketsPerPurchase

© ConcertRescheduled

0 LocalTime newDoorsTime

© TicketsSold

o int quantity
o int paidAmount

https://ted.dev/about

Code Walkthrough

Versioning Event Logs (Streams)

(see Greg Young's Versioning in an Event-Sourced System)
* Copy-Replace

* Split-Stream

*Join-Stream

* Copy-Transform

https://ted.dev/a bout%

CQRS - Separated Data Models

Client

Ccvmmomd—é[. wWrite APIJ

Query ﬁ Read AF‘I}

Read
Queries

Relational
Dotobase

) on—relcx‘tiono»l
Da\'toxbase

https://ted.dev/about

Event
Modelingc

Command

Ted M. Young Get in touch: ted@tedmyoung.com
Java Trainer, Coach, & Live Coder About me: https://ted.dev/about

What other questions e
do you have? ’-‘

Ted M. Young Get in touch: ted@tedmyoung.com
Java Trainer, Coach, & Live Coder About me: https://ted.dev/about

Thank You... corete

session!

Source Code? Slides?
https://ted.dev/talks/

	Default Section
	Slide 1: Event-Sourcing from Scratch
	Slide 2: Ted M. Young ted@tedmyoung.com
	Slide 3: Ask Questions As You Need
	Slide 4: Event Sourcing Frameworks/Libraries
	Slide 5
	Slide 6: What's in this TED Talk…

	Persisting Data
	Slide 7: How do we Persist Data?
	Slide 8: Mapping Objects from/to Database
	Slide 9: Adapter-Driven Persistence
	Slide 10: Storing Data as "CRUD" or "State"

	Events
	Slide 12: Fundamentals
	Slide 13: Definitions: EVENT (the past)
	Slide 14: Definition: STATE (now)
	Slide 15: Definition: COMMAND (future)
	Slide 16: Commands Generate Events
	Slide 17: Commands Generate Events
	Slide 18: …unless It's Not Allowed
	Slide 19: Events Update State
	Slide 20: Events Update State (always!)
	Slide 21: Events Project to State
	Slide 22: Event-Sourcing PROJECTION
	Slide 23: Event Store
	Slide 24: Benefits of Event-Sourcing
	Slide 25: Ask Questions You Didn't Know You Had
	Slide 26: Immutable Events
	Slide 27: Replayability
	Slide 28: Doman-Driven Design
	Slide 29
	Slide 30: Entity
	Slide 31: Value Object
	Slide 32: Aggregate
	Slide 33: Aggregate Pattern
	Slide 34: Repository
	Slide 35: Aggregate & Projections

	Misconceptions
	Slide 36: Misconceptions
	Slide 37: Event-Driven Architecture
	Slide 38: CQRS

	JitterTicket Codebase
	Slide 39
	Slide 40: JitterTicket Design
	Slide 41: Diving Into the Code
	Slide 42: Events as Java Records
	Slide 43: Events as Java Classes
	Slide 44: Code Walkthrough

	Versioning Schema
	Slide 45: Versioning Event Logs (Streams)

	Other Topics
	Slide 46: CQRS – Separated Data Models
	Slide 47: Event Modeling

	Closing
	Slide 48
	Slide 49: What other questions do you have?
	Slide 50: Thank You…

