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I Can Help Your Team...

Write more Testable code
with more Effective tests

Be more productive in

Java & Spring

Effectively use

TDD

Refactor 
Messy
Code

Ted M. Young
ted@tedmyoung.com
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Ask Questions As You Need

I may defer the 
answer if I'm going 
to cover it later!
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Event Sourcing Frameworks/Libraries

Java: 
AxonIQ

.NET: 
Marten

PHP: 
EventSauce
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What's in this TED Talk…
1. How do we persist data?

2. Define terms, clear up misconceptions

3. JitterTix: Concert Event Ticketing domain

4. Dig into code (warning: generics!) & tests

5. Related topics to explore on your own:
• CQRS, Event Modeling, Event Storming

• Versioning & Schema Migration

• Performance & Snapshotting

• Dynamic Consistency Boundary & Decider & GDPR
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How do we Persist Data?
Often: Map Objects to Database Tables (ORM)
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Mapping
Objects
from/to
Database
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Adapter-Driven Persistence
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Storing Data as "CRUD" or "State"

• "State-Sourced" / "CRUD-Sourced"

•No history, throws away old information

•No knowledge of how/why state changed

Concert
------
id = ab-12-cd
version = 1
------
artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100
ticketPrice = $135.00

Concert
------
id = ab-12-cd
version = 2 
------
artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100
ticketPrice = $35.00

Concert
------
id = ab-12-cd
version = 3
------
artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 120
ticketPrice = $35.00
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Fundamentals
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Definitions: EVENT (the past)

a fact, something that happened

CustomerRegistered

ConcertScheduled

TicketPurchased

TicketTransferred
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Definition: STATE (now)

Data model needed by the application.

Concert
------
id = ab-12-cd
version = 1
------
artist = "Jagged Arrays"
showDateTime = Nov 2 2025 8pm
ticketsAvailable = 100
ticketPrice = $135.00
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Definition: COMMAND (future)

Request to change state

schedule

reschedule

purchaseTickets
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Commands Generate Events



 https://ted.dev/about

Commands Generate Events
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…unless It's Not Allowed
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Events Update State
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Events Update State (always!)
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Events Project to State
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Event-Sourcing PROJECTION

A function that constructs a data model by 
sequentially replaying events from the 
event store.
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Event Store

An append-only "database" that records all 
events generated by the application.

🪵
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Benefits of Event-Sourcing
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Ask Questions You Didn't 
Know You Had
How many customers transfer tickets?
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Immutable Events
Never lose information: there is no DELETE
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Replayability
Time Travel: see state of system in the past
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Doman-Driven Design
Tactical Patterns
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Entity
Unique (Has Identity), History, and Attributes
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Value Object
Identified Only by its Attributes (immutable)

Quantify, describe, and measure
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Aggregate

Consistency [transactional] Boundary

(Enforced by "Aggregate Root" Entity)
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Aggregate Pattern
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Repository
Used for Storing and Retrieving Aggregates
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Aggregate & Projections
Aggregates in Event-Sourcing is a Projection

and the Decider
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Misconceptions
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Event-Driven Architecture
Different Kinds of Events
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CQRS
Command-Query Responsibility Segregation

Does Not Require Event-Sourcing!
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JitterTicket Design
tldraw
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Diving Into the Code
JitterTix: Concert Ticketing System
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Events as Java Records
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Events as Java Classes

Software design is 
all about tradeoffs.
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Code Walkthrough



 https://ted.dev/about

Versioning Event Logs (Streams)

(see Greg Young's Versioning in an Event-Sourced System)

•Copy-Replace

• Split-Stream

• Join-Stream

•Copy-Transform
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CQRS – Separated Data Models
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Event 
Modeling
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Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com
About me: https://ted.dev/about

What other questions

do you have?
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Thank You…
Source Code? Slides?
https://ted.dev/talks/

Ted M. Young
Java Trainer, Coach, & Live Coder

Get in touch: ted@tedmyoung.com

About me: https://ted.dev/about

Don't forget
to rate this
session!
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